
Pergamon 

Im. J. Heat Moss Transfer. Vol. 38, No. 15, pp. 280%2819, 1995 
Elsevier Science Ltd 

Printed in Great Britain 
0017-9310/95 39.50+0.00 

0017-9310(95)00022-4 

A new unified a posteriori error estimator for 
adaptive finite element analysis of coupled 

transport problems 
LEANDRO S. OLIVEIRA and KAMYAR HAGHIGHIt 

Department of Agricultural Engineering, Purdue University, W. Lafayette, IN 47907-l 146, U.S.A. 

(Received 4 March 1994 and injinalform 27 December 1994) 

Abstract-In this study, a new error estimator for coupled transport equations has been developed and 
successfully implemented. The error norm, based on the definition of the energy norm for the system of 
coupled equations, is evaluated and used in the process of error estimation and calculation of the sizes of 
the elements in the adapted mesh. A new adaptive strategy for transient problems was also implemented. 
The perfotmance of the proposed methodology is evaluated by applying it to selected examples. The results 
showed that the proposed error estimator is suitable for this type of analysis. The adaptive strategy utilized 

has proved to be efficient, avoiding unnecessary remeshings. 

INTRODUCTION 

Coupled problems are very common in the studies of 
simultaneous heat and mass transfer in porous media. 
Simultaneous heat and mass transfer due to the occur- 
rence of temperature and moisture gradients within a 
solid body is often ‘encountered in many technological 
processes. The determination of temperature and 
moisture distributi’ons in porous solids is essential for 
equipment and process design, product quality 
improvement, and the evaluation of storage and hand- 
ling practices. Some examples of simultaneous heat 
and mass transfer processes include the drying of 
cereal grain, foodstuffs, timber, paper, ceramics, clay 
brick, moisture migration in soils, freeze-drying of 
biological materials, and chemical vapor transport in 
crystal growth. 

Considerable work has been done in the past dec- 
ades on the development of sophisticated math- 
ematical models of the simultaneous heat and mass 
transfer in porous bodies [ 141. Most of these models 
are based on systems of coupled nonlinear partial 
differential equations where temperature and some 
kind of moisture potential are the primary variables. 
In most cases, the analytical solution of these equa- 
tions cannot be determined and an approximate solu- 
tion technique must be used. The finite element 
method is a powerful numerical technique capable 
of solving such complex problems. This numerical 
technique has been successfully used to simulate 
coupled transport problems [5-161. 

It is well established in the literature that the use of 
adaptive techniques can increase the accuracy and 
reliability of finite element solutions [17]. The objec- 
tive of an adaptive procedure is to enhance the quality 
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of the finite element solutions by continuously rede- 
fining the mesh and reducing the discretization error 
until the solution converges to the desired accuracy. 
In recent years, there has been a great deal of research 
effort put into the development of efficient adaptive 
finite element procedures. Researches in this area are 
primarily concerned with the development of reliable 
and computationally inexpensive error estimates for 
finite element computations. An extensive review on 
this subject was presented by Noor and Babuska [ 181. 
These estimates play an important role in the devel- 
opment and implementation of an adaptive finite 
element procedure. 

Up to now most of the work done on a posteriori 
error estimates and adaptive procedures is concerned 
with linear uncoupled problems. An extensive work 
on linear elasticity problems has been published [19- 
23]. The adaptive finite element method has also been 
applied to nonlinear problems [24-281. The magnitude 
of the error depends on the exact solution of the prob- 
lem, since the magnitude is a measure of the ‘distance’ 
between the approximate and exact solutions. 
However, in most real-world applications, the exact 
solution is not available and must be estimated. Zien- 
kiewicz and Zhu [19] showed that globally smoothed 
values of stresses representing a higher-order approxi- 
mation of the original stresses obtained from a finite 
element analysis could be used instead of the exact 
solution to calculate the error. This smoothing pro- 
cedure was successfully used by Huang and Lewis 
[29] in their adaptive finite element methodology for 
steady-state heat transfer problems. 

Finite element solutions for transient problems 
have also been improved by adaptive techniques. In 
an application to wave propagation problems, Lohner 
[30] used a modified form of the classic interpolation 
estimates used for steady-state computations in an 
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NOMENCLATURE 

C constant 
cIn mass capacity 
cq heat capacity 
IlEll exact energy norm 
e error vector 
llcll error in the energy norm 
h element size 
h, mass transfer coefficient 
h, heat transfer coefficient 
Jnl mass flux 
Jg heat flux 
K diffusivity 
L differential operator 
L,, L2 constants 
M number of elements in a mesh 
N shape function 
n surface outward normal 
ne number of nodes per element 
P polynomial degree 
T temperature 
t time 
u moisture potential 
V vector of dependent variables 
x, y Cartesian coordinates. 

Greek symbols 
% convective heat transfer coefficient 

a” convective mass transfer 
coefficient 

l- boundary surface 
6 thermo-gradient coefficient 
& phase conversion factor 
? relative error 
ii target relative error 
1 latent heat 
5 refinement variable 
P density 
d,, & generic transport variables 
n domain. 

Subscripts and superscripts 
0 initial 
A area 

element 
; final 
m mass 
0 previous value 
P, S smoothed 
q heat 
S surface 
W wall 
cc undisturbed fluid. 

adaptive finite element scheme for transient problems. 
Later, he incorporated directional refinement and 
body motion in the context of adaptive refinement 
[31]. This directional refinement was a combination 
of h-refinement and stretching of the elements in the 
regions where the gradients were very steep. Error 
estimates based on an interpolation theory were used 
by Probert et al. [32] in the adaptive procedure to 
solve a two-dimensional (2D) transient heat con- 
duction problem. Lewis et al. [33], in an extension 
of a previous work [29], also applied the adaptive 
technique to transient flow problems together with an 
adaptive time stepping scheme. 

There are some studies dealing with error esti- 
mation and adaptive analysis for coupled problems 
available in the literature, but almost all of these 
efforts deal with equations that are solved sequentially 
and not simultaneously. An application of error esti- 
mation and adaptive techniques to systems of sim- 
ultaneous coupled differential equations was pre- 
sented by Trompert [34]. The numerical technique 
used was the finite difference method and error esti- 
mators were developed separately for each equation 
of the coupled system. Each error estimator presented 
different behavior, leading to difficulties in estab- 
lishing a simple and efficient refinement strategy. The 
development of a single unified error estimator that 
includes the coupling effects is crucial for the estab- 

lishment of a more accurate and efficient adaptive 
procedure. 

In this paper, a new, simple, efficient and unified 
error estimator for coupled transport problems is pre- 
sented. The error norm, based on the definition of 
the energy norm for the system of coupled partial 
differential equations, was evaluated and used in the 
process of error estimation and calculation of the size 
of the elements in the adapted mesh. Unlike other 
error estimators for systems of coupled equations [34], 
this new estimator is based on the system of equations 
and not on each transport equation separately. With 
that, the problem of having different error behavior 
for different equations in the system is overcome. An 
adaptive h-refinement procedure was also used in this 
study. Two example problems were studied to dem- 
onstrate the technique. 

THEORETICAL CONSIDERATIONS 

This section presents the formulation for error esti- 
mation and the general procedure for implementing 
the adaptive analysis for coupled transport problems. 
Although the concept of energy norm, formulated by 
Zienkiewicz and Zhu [19], is used here, the devel- 
opment of the error in the energy norm for coupled 
transport problems and its implementation is totally 
new and unique to this work. 
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Coupled transport equations 
In a generalized form, the system of coupled trans- 

port equations can be written as 

c~;= V(k,,VT+k,,VU) (1) 

c$ = V(k2,VT+kZ2VU) (2) 

where T = T* - Tm is the normalized temperature, 
U = U* - U, is the normalized moisture potential, 
T* is the temperalture, U* is the moisture potential, 
T, is the air temperature, U, is the air moisture poten- 
tial, k, ,, k12, k,,, Jz22 are the diffusivities, and cq and 
c,,, are the heat and mass capacities, respectively. 

The generalized boundary conditions are given by 

c,,k,, 
aT 
z +c1&,2 

au 
z +c,,h,T 

+c,,h,Z~+j, =0 onTi i= 1,2... (3) 

aT 
cz,kz, - 

alJ 
an +cxkzz z +c&T 

+czmhmU+j, = 0 onT; i = 1,2.. . (4) 

where h, is the heat transfer coefficient, h, is the mass 
transfer coefficient, n is the surface outward normal, 
j4 is a known heat flux, j,,, is a known mass flux, and 
cii, i, j = 1, 2, are constants that can be either 0 or 1, 
and cis and ci,,,, i = 1,2, are known constants that will 
depend on the model used ; Ti, i = 1, 2. . , represent 
boundary surfaces. 

Error estimation 
In Galerkin’s we.ighted residual method, the depen- 

dent variables T and U are approximated by inter- 
polating functions in terms of the known nodal values 
T, and U, : 

T z ‘T = C Nj(X,Y)q(t) 
(5) 

j= I 

U x 0 = f: NjCx,Y)U,Ct) (6) 
j=l 

where i; and 0 are the approximated values of the 
temperature and moisture potential, and the Nj’s are 
the basis functions. 

The error in the finite element solution can be expre- 
ssed as 

T-T 
e= U-0’ 

[ 1 (7) 

The pointwise definition of error as given in equa- 
tion (7) is difficult to implement and, in general, norms 
and semi-norms are used instead [ 191. One of the most 
common norms is the energy norm. The energy norm 

has proved to be very effective in diffusion problems 
[29] and can be written in general form as 

(8) 

where L is the differential operator. For the coupled 
system of equations (I) and (2), the differential oper- 
ator is defined as 

Vk,,V 
1 VkZ2V ’ 

If equations (7) and (9) are substituted in equation 
(8) : 

lle11’ = - [T-F U-o] 
s n 

= - [T-T U-o] 
s R 

x 

[ 

Vk,,V(T-F)+Vk,,V(U-0) dn 
Vk,,V(T-T)+Vk,,V(U-0) 1 

= - [(T-nVk,,V(T-I?) 
s R 

+(T- ?=)Vk12V(U- 0) 

+ (U- U)Vk,,V(T- T) 

+ (U- O)Vk,,V(U- o)] dQ. (10) 

If we apply Green’s theorem to equation (lo), the 
error in the energy norm for the coupled transport 
problem described by equations (1) and (2) can be 
written as 

Ilell’ = k,,(VT-Vn* dR+ k22(VU-VQ2 dQ 
s R s n 

+ 
s 
R (k,, +k,,)(VT-VO(VU-VO)dR 

(11) 

The error in each element is then calculated as fol- 
lows : 
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Ilellz = 
s 

[k,, (VT-V?=)’ +k2,(VU-VU)* 
A, 

+(k,,+k2,)(VT-VT)(VU-Vo)]dA 

(12) 

where A, is the area of the element, and S, is the length 
of the side of the element on the boundary. 

In a similar fashion the exact energy norm can be 
defined as 

(13) 

where 

T 
v= 

[I w (14) 

represents the exact solutions of temperature and 
moisture potential, and L is the differential operator as 
defined in equation (9). Following the same procedure 
that led to equation (1 l), one can obtain for lIEI : 

IIW = f (k,,(VT)*+knO’V” 
JQ 

+(k,*+k*,)(VT)(VU))dn 

- 

dT. (15) 

A practical representation of the error in terms of 
a relative error is 

II4 
)I=lIE(I. (16) 

The exact solutions of the dependent variables (tem- 
perature and moisture potential) and their gradients 
are usually not available for this type of problem. 
For the temperature and moisture gradients, a global 
‘smoothed’ value taken as a higher-order approxi- 
mation of the value given by the finite element solution 
can be used instead [29]. The smoothed continuous 
values of the temperature and moisture gradients in 
each element, aTs/8xi and aUs/&, are evaluated in 
the following way : 

(17) 

(18) 

where ne is the number of nodes per element, N, are 
the shape functions used in the finite element analysis, 
ZP’/axi and aUP/ax, are the unknown smoothed nodal 
values obtained by imposing the following con- 
straints : 

[9NTrg-g)dQ=0 (19) 

[9NT(g-g)dQ=tl (20) 

in which ain/laxi and a17/laxi are the gradient values 
obtained from the original finite element analysis. 
Application of equations (19) and (20) to all the 
elements in the domain leads to the following systems 
of equations : 

/A N’Ndxdy{g} = [NTgdxdy (21) 

jA NTNdxdy{!$} = =/NTgdxdy (22) 

where aTP/ax, and dUQ/ax, are the smoothed gradi- 
ents. Systems (21) and (22) are solved to find the 
globally smoothed values of the temperature and 
moisture gradients. 

An approximation for the exact value of the depen- 
dent variable in the boundary integrals was developed 
by Franca and Haghighi [35]. This approximation is 
taken as a higher-order approximation than the finite 
element solution. A similar approach was adopted in 
this study. The values of T and U on the boundary 
are taken as the solution of the system of equations 
given by boundary conditions (3) and (4) : 

c,,h,T+c,,h,U= - c,,k,, 
aT z+c1&,‘g+j, > 

(23) 

cz&,T+c~,h,~= - cz,k,, g+~~~k~~g+j,,, 
> 

(24) 

where aTjan and aU/an are the smoothed temperature 
and moisture gradients given by the solution of the 
system of equations (21) and (22). 

In the case of the integrals containing the finite 
element solution gradients, the boundary conditions 
(3) and (4) are used to give 
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and 

(25) 

The solution of system of equations (23) and (24), 
and equations (25) and (26) are substituted ia qua-’ 
tion (12) in the callculation of the error in each went. 
Similarly, the solution of system of equation* (23) and 
(24) are substituted in equation (15) for the evaItMion 
of the exact energy norm. 

Adaptive procedure 
The approximark UJXRS in each element can be 

evaluated by using the smoothed temperature and 
moisture gradients i n e@ions (12). The total error 
is then related to th&individual element contributions 

by 

The req alt +foor an optimum mesh is that all 
the elewta d the tm?sh must have approximately 
eqw] mor &dbution [19,29]. If we distribute ((EII’ 
qmlly ovsr aII the ekments, the average error per 
a-t can be estimated as 

If 4 is a pre-specified limit for the percentage error, 
then the error in e,ach element is bounded by 

where M is the total number of elements in the mesh. 
If we define a new variable 5 as 

we can then establish a criterion for mesh refinement 
and derefinement. Whenever 5 > 1 the mesh will be 
refined ; otherwise, the mesh will be coarsened. The 
predicted size of the new element can be calculated 
from the current el.ement size : 

h, = tz,“/p (31) 

where h, is the predicted new element size, h,” is the 
current element size and p is the polynomial order of 
the shape functions. 

IMPLEMENTATION 

A finite element code was developed for the solution 
of coupled transport problems and implemented on a 

Sun 2 SPARCstation. A &&r-he for error esti- 
mation and evaluation of the size of-the new mesh 
is included in the code. The program, including the 
adaptive remashing, IS fully automatic and the user is 
only rquirui to build the initial coarse mesh. The 
software INTELMESH developed by Kang and 
Haghigbi [36] was u&Or for the mesh generation. It 
generates the nodes in the problem domain using the 
concept of wave propagation. The mesh generator 
~110~s the user to specify the size of the elements 
around the critical points. 

The present implementation of the adaptive strat- 
egy for transient coupled problems works in the fol- 
lowing way : for each N advances in time (N is an user 
defined constant), after the finite element analysis is 
performed, the overall solution error is evaluated from 
equation (16). If q is greater than a pre-specified limit, 
then the sizes of the elements in the new adapted mesh 
are computed from equation (3 1). The refinement pro- 
cess is carried out by using the centroid of each 
element of the original mesh as a critical point in the 
adapted mesh generation process. The evaluated size 
of each element will be the size of the new mesh around 
each critical point, and the grading of the mesh is 
controlled by the wave propagation rate in the mesh 
generation process. The interpolation of the nodal 
information from one mesh to another is carried out 
using the same shape functions used in the finite 
element approximation of the variables. The adaptive 
strategy used in this study is described in detail in 
Oliveira et al. [37]. The adaptive time stepping meth- 
odology developed by Gresho et al. [38], and modified 
by Bixler [39] was implemented. The formulation for 
time step size prediction takes into account both tem- 
perature and moisture potential rates of change as 
well as the mesh size. 

To illustrate the numerical performance of the pro- 
posed formulation, two example problems were selec- 
ted and successfully implemented. The error in the 
finite element solution for transient coupled transport 
problems was estimated, and its variation in time is 
presented. There are no analytical solutions available 
for both examples. The numerical results obtained in 
this study were compared to other numerical solutions 
available in the literature. All finite element models for 
the analyses consisted of linear triangular elements. 

Example 1. For this example, a generic system of 
two coupled differential equations was adopted and 
solved. The equations used have the following format : 

c, !$ = K,,V2& +K,,V=C$,+L, c 
ay 

c2%$= K2,V24,+K22V2~2+L2~ 
ay 

(32) 

(33) 

where #J, and $2 are the dependent variables, c, and 
c2 are the capacities, K,,, K,,, K2, and Kz2 are the 
conductivities, L, and L2 are constants, and C is a 
property of the medium. The equations format 
resembles the transport equations used to describe 



2814 L. S. OLIVER4 and K. HAGHIGHI 

Table 1. %elTbip~ af the equations in Example 1 

Property 

K, I 
K,, 
&I 
K** 
c 

Value 

1 x 10-l 
2 x 10-5 
2 x 1o-5 
5 X 1o-2 
1 x 1o-2 

Property 

:; 

Cl 
C2 

Value 

0.0 
1.0 
1.0 
1.0 

heat and mass transfer in saturated soils, where gravi- 
tational effects are taken into account [9]. The values 
for the coefficients involved are presented in Table 1. 
The schematic diagram of the problem with imposed 
initial and boundary conditions is shown in Fig. 1 (a). 

The initial coarse mesh was arbitrarily generated 
and is shown in Fig. l(b). NON and NOE stand for 
the number of nodes and the number of elements, 
respectively. The first adapted mesh is generated after 
the first advance in time and is presented in Fig. 1 (c). 
The mesh is more refined close to the inclined surface, 
where the geometrical and boundary conditions 

91 = 25.0, $2 = 15.0 

1 c 

NON=19-NOE=22 

W 

NON=62-NOE=lCCl 

on Fc- and FDA. (39) 

Fig. 1. (a) Schematic diagram of Example 1, (b) initial mesh Equations (34) and (35), and boundary conditions 
and (c) adapted mesh for tr = 1 .O. (38) and (39) were nondimensionalized following the 

effects are more accentuated. The specified target error 
was 4 = 0.15. 

The contour plots for the dependent variables 4, 
and & are presented in Figs. 2(a) and (b), respectively. 
Both distributions agree with the expected behavior. 
The influence of the boundary conditions along the 
inclined surface is clearly seen as it forces the contour 
lines to shift downwards in the lower part of the 
domain. Figure 3(a) shows the time step size variation 
with time. The time step size increases at the begin- 
ning, reaches a maximum, then decreases monot- 
onously, staying almost constant until the final time 
is reached. The time step size decreases in response to 
a decreaie itl the element size after the first adaptive 
remeshing. The analysis was completed after 257 time 
steps. The error variation with time is presented in 
Fig. 3(b). The estimated error decreases very fast at 
the beginning, approaching 0 constant value for the 
remaining time at a much s~WC~ rate. No more than 

one remeshing was necessary, . 
T 

the error reached 
the specified tolerance at the b+, hg of the process. 

Example 2. The second exanpk sm was that of 
a rectangular timber slab under convective drying 
[Fig. 4(41. Due to the symmetry of the problem, a 
quarter of the timber slab wos ~4 for the finite 

element analysis. Symmetry UXlthtions (i.e. zero heat 
and mass fluxes) were assumed.ql~ sides AB and 
BC, and convective boundpry conditions were 
assumed along sides CD and DA. L~+ov’s equations 
for coupled heat and mass transfn: in porous body 
were adopted and solved. If the total pr~sswe ia 
assumed constant throughout the porous body, Lm_ 
kov’s basic conservation equations are 

,ucs F = V[(k, +dk,G’)VT*+dk,VU*] (34) 

PC,,,% = V[k,G’VT*+k,VU*] (35) 

where 6’ = 6/c,,,. 
The initial and boundary conditions for equations 

(34) and (35) are 

T:= To lJ,*= U, (36) 

aT* au*=0 on F andr p= 
an an AB BC (37) 

k,~+j,+m,(T-T,)+(l-c)la,(U-u,) =0 

on Fc,, and FDA (38) 

km% +j,,,+k,s’g +a,(r/-u,) = o 
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Fig. 2. (a) 4, and (b) 42 distribution for t = 1.0. 

lines of Thomas e,r al. [8]. The discretization of the For tr = 20 min, the initial coarse mesh, arbitrarily 
nondimensionalized form of equations (34) and (35) defined by the user, is shown in Fig. 4(b). The first 
was based on the application of the Galerkin weighted adaptive remeshing was imposed to occur after the 
residual method [40]. The boundary condition and first advance in time and the adapted mesh is presented 
thermophysical properties data are listed in Table 2. in Fig. 4(c). The adapted mesh is more refined near 
The analysis was performed for two different drying the upper and right surfaces where the convection 
times, tf = 20 min and tr = 100 h. The initial con- takes place, i.e where both temperature and moisture 
ditions were T,, = 10°C and U, = 100”M for both potential gradients are steeper. The prescribed target 
analyses. error was ij = 0.15. 

0.0014 0.6 

At 0.0008 

I 

0.5 
Tie 

I 
1 

(a) (b) 
Fig. 3. (a) Time step size variation and (b) error variation in time for tf = 1 .O 

L- 
I I I 
0 0.5 1 

Time 
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I 
2Ocm I 

(4 

NON=27-NOE=32 

NON = 224 - NOE = 379 

Fig. 4. (a) Schematic diagram of Example 2, (b) initial mesh and (c) adapted mesh for ?r = 20 min. 

The time step size variation with time is presented in 
Fig. 5(a). The time step size increases at the beginning, 
reaches a peak and then suddenly drops. This sudden 
drop is attributed to a delayed response to the adapt- 
ive refinement that occurred after the first advance in 
time. After the drop, the time step size goes on increas- 
ing and stabilizes until the final time is reached. The 
savings in the time step size were of about 25% of its 
initial value (At, = 2 s). The analysis was completed 
in 489 time steps. 

The results of the analysis for temperature variation 

in the lower left corner of the slab (x = 0, y = 0) are 
shown in Fig. 5(b) where they also compared to the 
results of Thomas et al. [8] and Irudayaraj et al. [40]. 
The predicted temperature lies between the pre- 
dictions of the other two models. The moisture poten- 
tial variation in the same coordinates (x = 0, y = 0) 
was not significant for tr = 20 min. 

Figure 5(c) shows the estimated error variation. The 
error decreases monotonously after the first adaptive 
refinement reaching a final value of q = 0.084 at 
tr = 20 min. Since the error kept decreasing and 

Table 2. Boundary condition data and thermophysical properties for Example 2 

Property Value Unit Property Value Unit 

k, 
Cs 
cln 
k, 
aq 
a, 

0.35 W m-’ Km’ P 500.0 kg m-’ 
1284.0 J kg-’ Km’ 0.3 
0.003 kg kg-’ “M-’ : 0.25 x 10’ J kg-’ 

1.5 x 1om9 kgms”M-’ b 0.02 “C-l 
22.5 W m-* K-’ T, 60.0 “C 

1.67 x 1O-6 kg mm2 s ‘M-’ IJ0Z 100.0 “M 
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2.4 

2.3 
At (set) 

2.2 

1, 3bo 6&I 9b l&o 
Time (see) 

5 10 15 20 
Time (mia) 

(h) 

0.6 J--- 
0.5 

0.4 

V 0.3 

0.2 
0.1 

0 i 
I I I I I 
0 5 10 15 20 

Time (mia) 
(e) 

Fig. 5. (a) Time step size variation, (b) temperature variation 
at x = 0 and y = 0 and (c) error variation for Example 2, 

ff = 20 min. 

reached the target error (rj = 0.15) early, no more 
adaptive refinements were needed. 

In order to demonstrate the influence of the moist- 
ure potential variation on the solution error, an analy- 
sis for tr = 100 h ‘was performed. The initial coarse 
mesh used is the same used in the previous analysis 
(tr = 20 min) and is presented in Fig. 4(b). Figure 6(a) 
shows the first adapted mesh, after the first time step. 
Again, the mesh is more refined close to the surfaces 
where convection takes place. This mesh is less refined 
than the one obtained in the previous analysis because 
the target error in this case was higher (rf = 0.20). 

Figure 6(b) shows the time step size variation. The 
time step size increases at the beginning, reaches a 
peak and then have a sudden drop in response to the 
adaptive refinement. After the drop, the time step size 
goes on decreasing until the final time is reached. 

The predicted moisture potential variation in the 
lower left corner of the slab is presented in Fig. 6(c). 
The results are compared to the results of Thomas et 
al. [8] and Irudayaraj et al. [40]. The predicted moist- 
ure potential rate of change is slower than in the other 

NON=115-NOE=194 

. _ 
---Thomasernl.[8] 

40 . . . . . . . Iradayaraj et ul. [40] 
- TlliSstudY 

20 
I I I I I I 
0 20 40 60 80 100 

The om 

0.6 ,L 
0.5 

0.4 
q 

0.3 

0.2 

0.1 
L -1 

0 20 40 60 80 100 
Tbne olrs) 

(d) 

Fig. 6. (a) Adapted mesh, (b) time step size variation, (c) 
moisture potential variation at x = 0 and y = 0 and (d) error 

variation for Example 2, tr = 100 h. 

two models at the beginning and then at about half 
way to the final time there is no significant difference 
among the three. The temperature in the slab achieves 
a steady-state in the early minutes of the drying pro- 
cess and there is no significant variation from then on. 

The estimated error variation presents an inter- 
esting behavior in this case [Fig. 6(d)]. The error 
decreases very fast after the adaptive remeshing, 
reaches a minimum and then goes up, reaches a local 
maximum and then decreases monotonously 
approaching a constant value. The peak in the error 
curve is caused by an increase in the denominator of 
equation (16) when the contribution of the boundary 
integrals to the energy norm are most significant. Both 
temperature and moisture gradients are very high at 
and close to the boundaries at the beginning. Since 
the error reached the prescribed error early, no more 
adaptive remeshings were needed. 
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CONCLUSIONS 14. 

A new, simple and efficient unified error estimator 
for coupled transport problems was proposed and 
successfully implemented. This error estimator is very 
generic and can be applied to any system of coupled 
transport differential equations. For example, if the 
total pressure is not constant throughout the porous 
body, an equation for pressure would have to be 
added to Luikov’s model. The formulation for error 
evaluation would remain the same. The only differ- 
ence is that the error vector would contain the pressure 
error in it. Both the proposed error estimator and 
adaptive strategy utilized have proved to be very 
efficient. The desired accuracy was always attained 
and the adapted meshes agreed with the expected 
physical behavior, i.e. the meshes were more refined 
in regions where steeper gradients were expected. 
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